	National 5 Chemistry	AR	on	Tra	ffic L	ight
H	Unit 2.3 Energy From Fuels	hem	Less	Red	Amber	Green
35	 A reaction or process that releases heat energy is described as exothermic. A reaction or process that takes in heat energy is described as endothermic. Reactions with energy changes can raise or lower the temperature of the surroundings: Exothermic reactions release energy to the surroundings (raising the temperature of the surroundings) 			8	:	0
26	Endothermic reactions take in energy from the surroundings (lowering the temportation a substance reacts with ovurgen releasing onergy)	erature)	\odot	\odot	\odot
30	Hydrocarbons and alcohols burn completely in a plentiful supply of oxygen to produce c	arhon		\odot	Ð	\bigcirc
37	The quantity of heat energy burning alcohols releases can be calculated experimental outputs of only generative of dioxide and water. Equations can be written for the complete combustion of hydrocarbons and alcohols: methane + oxygen → carbon dioxide + way C2H4 + 2O2 → CO2 + 2H ethene + oxygen → carbon dioxide + way C2H4 + 3O2 → 2CO2 + 2H cyclobutane + oxygen → carbon dioxide + way C4H8 + 6O2 → 4CO2 + 4H ethanol + oxygen → carbon dioxide + way C2H5OH + 3O2 → 2CO2 + 2H Fuels burn releasing different quantities of energy. The quantity of heat energy burning alcohols releases can be calculated experimentally of the terms of the momental outputs of the momental out	ater I2O ater I2O ater I2O ater I2O using:		8	(i) (i)	0
39a	copper beaker draught shield ethanol spirit burner			$\overline{\mathbf{S}}$:	٢
	The quantity of heat energy released can be calculated using the equation $E_h = cm\Delta T$					
39b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
40	The quantities E_h , c , m or ΔT can be calculated, in the correct units, given relevant data. The enthalpy changes can be calculated using $E_h = c \ge m \ge \Delta T$. e.g. Calculate the energy released by burning ethanol heated up 200cm ³ of water by 6°C. $E_h = c \ge m \ge \Delta T$ $= 4.18 \ge 0.2 \ge 6$ = 5.016 kJ e.g. Burning an alcohol released 13.3kJ of energy as it raised the temperature of sodium chloride solution from to 49°C. The mass of the sodium chloride solution was 100g. Calculate the specific heat capacity of this solution of sodium chloride solution. $E_h = c \ge m \ge \Delta T$ $E_h = c \ge m \ge \Delta T$ $E_h = c \ge m \ge \Delta T$ $C = \frac{E_h}{m \ge \Delta T} = \frac{13.3 \text{ kJ}}{0.1 \text{ kg} \ge 34^\circ\text{C}} = \frac{13.3}{3.4} = 3.91 \text{ kJ kg}^{-1} \circ \text{C}^{-1}$ Calculations can involve heating substances other than water and the value of c to change to reflect the specific heat capacity of the new substance heating up.	om 15°C will		8	٢	0

Nat5 Past Paper Question Bank												in An							
Traffic	: Lights		Unit 2.3 Energy From Fuels											UNICASIA					
Outcome	<u>Original</u>	<u>New</u> Specimen	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>	Nat5	Nat5									
Ourcome	Paper	Paper	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	2020	2021									
35		L9a	mc14	L6c	L3a	mc14		L9a											
36	mc10	mc10																	
37		L8d			mc9	mc12	L16b												
38	L9a				L9b(i)														
39a							mc15	L9b(ii)											
39b																			
40	L9b(i)	L9b(i)	L9c	L8b	L9c	L14b	L9b	L9b(i)											

Nat5	Answer	% Correct			Reasoning								
2014 "c 14	С	47	⊠A en ⊠B hea ⊠C A t ⊠D A ·	A energy being required to start a reaction does indicate either exo/endoth B heat being given off indicates an exothermic reaction C A temperature drop during a reaction indicates an endothermic reaction D A temperature rise during a reaction indicates an exothermic reaction									
2016 ^{"c} 9	В	63	⊠A cai ⊠B car ≌C car ≌D hy	rbon (soot) is formed by rbon dioxide & water for rbon monoxide is formed drogen is formed by inco	incomplete combu med by complete by incomplete co mplete combustic	ustion in a li combustion mbustion in on in a limite	mited supply of air in plentiful supply of a limited supply of a ed supply of air	f air 1ir					
2017 "c 12	С	50		Element in Fuel Product of Combustion	Sulphur Sulphur Dioxide								
2017 "c 14	В	92	⊠AEn ⊠Bexo ⊠CEno ⊠DAI	dothermic reactions abso othermic reactions relea ergy required to start re reaction must have an en	orb energy from t se energy to the s caction not relate ergy change to be	the surroun surrounding d to the ene e exothermi	dings (drops the tem s (raises the temp) ergy given off c	ıp)					
2018 "c 15	В	-	⊠Ame ⊠Bme ⊠Cdro ⊠Ddro	A metal beaker used instead of glass beaker to allow heat to conduct better B metal beaker and draught shield should be used for the most accurate result C draught shield should be used to reduce heat loss D draught shield should be used to reduce heat loss									

Nat5	Answer	Reasoning												
		$E_h = c \times m \times \Delta T$												
2014	0405	Energy = specific heat change in Energy = canacity × mass × temporature												
9c	3135	Energy = $4.18 \times 25 \times 30$												
		Energy = 3135kJ												
2015		Everthermine Chemical reaction which gives out energy												
60	exothermic	Endothermic Chemical reaction which takes in energy from the surroundings												
2015		$E_h = C \times M \times \Delta I$ specific heat change in												
01.	14.2 kJ	Energy = capacity × mass × temperature												
ØD		$E_{h} = 4.18 \times 0.1 \times 34$												
		$E_h = 14.212 kJ$												
2016		Exothermic Chemical reaction where heat energy is released to surroundings (temperature of the surroundings increases)												
3a	Exothermic	Endothermic Chemical reaction where heat energy is absorbed from surroundings												
2016		(temperature of the surroundings decreases)												
	-OH on end increases	The energy released is consistently higher when -OH group in on 1st/end												
9 D(i)	the energy released	carbon (-1-01 alcohol) than it is when the -OH is on the 2^{∞} carbon (-2-01)												
2016	55.0	$E_{h} = 23$ = 55.0°C												
9c	55.0	$E_h = cm\Delta t \therefore \Delta t = \frac{c \times m}{c \times m} = \frac{(4.18 \times 0.1)}{(4.18 \times 0.1)} = 55.0^{\circ}c$												
2017		Eh 13.3												
14b	3.91	$E_h = cm\Delta T \therefore c = \frac{c_{h}}{m \times \Delta T} = \frac{1000}{(0.1 \times 34)} = 3.91 \text{ kJ kg}^{-1} \circ C^{-1}$												
		heat energy = specific heat capacity × mass × change in Temperature												
2018	170.0	$C_h = C \times m \times \Delta I$												
9b	4/2.8	$E_{h} = 1.97 \text{ kJ kg}^{-1} \circ C^{-1} \times 1.5 \text{ kg} \times 20^{\circ} C$												
		$E_{h} = 472.8 \text{ kJ}$												
2018														
16b	Any answer from:	Sulphur oxide Sulphur monoxide Sulphur dioxide Sulphur trioxide												
2019		Type of Reaction Definition												
0.	Exothermic	Exothermic Reaction which releases energy												
90		Endothermic Reaction which takes in energy from the surroundings												
		heat energy = specific heat capacity X mass X change in Temperature												
		$E_h = C \times m \times \Delta T$												
2019														
	0.05	$8.36 = 4.18 \times M \times 40$												
9 D(i)		8 36												
		$m = \frac{0.50}{1000} = 0.05 kg$												
		4.18 × 40												
2010		Companies bother and the Charles												
	Both answers:	Copper is a better conductor of heat												
YD(ii)		Lower heat loss to surroundings												

Nat5 Past Paper Question Bank											14 A						
Traffic	: Lights			Unit	1 2.3	.3 Energy From Fuels											
Outcome	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	
	<u>2000</u>	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>	
35	mc4			L2a		L3a(ii)	L12a			L3a	L2a			mc1	L5a		
36				L2c		mc9						mc9					
37		mc12 L2a		L10a	L13b				mc8		mc10		mc11	mc11	mc12		
38	L11a									L6a						L4a	
39a																	
39b																	
40															L8c		

Int2	Answer	% Correct	Reasoning
2000			🗷 A In exothermic reactions, heat is released to the surroundings
MC		12	B In exothermic reactions, heat is released to the surroundings
Δ	U	42	$oxtimes \mathcal{C}$ If products have more chemical energy than the reactants, heat must be taken in (endo)
Т			${f ar D}$ If products have less chemical energy than the reactants, heat must be taken in (exo)
2001			
MC	$\boldsymbol{\mathcal{C}}$	45	Product Carbon dioxide Sulphur Dioxide Water
12			Element in Reactant carbon sulphur hydrogen
2005			MA Combustion: burning reaction joining up with oxygen
MC	Α	35	B Condensation: small molecules join together with water removed at join
9			E Dehydration: water is removed from a molecule leaving a C=C double bond
			ND Hydrolysis: larger molecule breaks up with water added at the split
2008			Hydrocarbons burn in a plentiful supply of air to form carbon dioxide and water
мс	D	65	 Methane is an alkane
8			 alkanes are hydrocarbons
2010			$\square A C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$
2010		70	I B C ₂ H ₆ + $3\frac{1}{2}$ O ₂ → 2CO ₂ + 3H ₂ O
10	A	10	$\square C C_4 H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O_2$
10			$\blacksquare D C_4 H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$
2011			☑A Combustion is the burning a substance in oxygen
2011		11	B Condensation joins together two molecules removing water at the join point
	A	41	⊠C Dehydration removes water from a molecule leaving a C=C double bond behind
9			ND Hydrolysis is breaking down a larger compound adding water across the break
2012			\mathbb{I} A C ₂ H ₆ + $3\frac{1}{2}$ O ₂ \rightarrow 2CO ₂ + 3H ₂ O \therefore 1 mole of C ₂ H ₆ burns to form 2 moles of CO ₂
2012		10	$\square B C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O = \therefore 1$ mole of C_3H_8 burns to form 3 moles of CO_2
1 1	В	68	$\square C C_4 H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O \therefore 1$ mole of $C_4 H_{10}$ burns to form 4 moles of CO_2
11			$\blacksquare D C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O \therefore 1 \text{ mole of } C_5H_{12} \text{ burns to form 5 moles of } CO_2$
			A energy is released in any exothermic reaction to the surroundings
2013			☑B energy is released in any exothermic reaction to the surroundings
MC	R	93	C energy absorbed from the surroundings is an endothermic reaction
1		20	No. when the products have more energy than the reactants then energy has been
_			absorbed from the surroundings during the reaction \therefore endothermic reaction
2013			$\mathbb{E}A$ if compound burned produces H_2O then hydrogen must be found in the fuel
2013	~	11	■B if compound burned produces CO₂ then carbon must be found in the fuel
11	C	40	$\square C$ If CO ₂ and H ₂ O are found in the products then fuel contains both C and H
11			Notice of the second in the fuel or the air the fuel burned in
			☑A nitrogen compound formed comes from nitrogen in compound being burned
2014			B hydrogen compound formed comes from hydrogen in compound being burned
MC	С	45	☑C compounds of nitrogen, hydrogen and carbon formed mean all three must be in
12		C	
			No oxygen could have come from the air that the compound was burned in

Int2	Answer	Reasoning											
2000	Substance which burns												
11a	to give out energy	A fuels is any substance which durns to give out energy e.g. neat energy											
2001	Carbon dioxide	Alkynes are hydrocarbons. Hydrocarbons burn in a plentiful supply of air											
2a	and water	to produce carbon dioxide and water.											
2003	Reaction which	Exothermic: reactions which give out energy or heat											
2a	releases heat/energy	Endothermic: reactions which absorb energy/heat from the surroundings											
2003	Jar A has more	When dinitrogen monoxide breaks down, it contains 67% nitrogen and											
2c	oxygen (33%) than air	oxygen. As air has 21% oxygen, candle will burn longer in 33% oxygen.											
2003	carbon dioxide	Methane is a hydrocarbon. Hydrocarbons burn to form carbon dioxide											
10a	and water	and water. The remaining 30% carbon dioxide does not burn.											
2004	Carbon, nitrogen and	Product Elements present that must be TNT Carbon dioxide Carbon (only)											
13b	hydrogen	Nitrogen Nitrogen water Hydrogen (only)											
2005		Exothermic: reactions which release (heat) energy											
3a (ii)	exothermic	Endothermic: reactions which absorb heat energy from the surroundings											
2006		Exothermic reactions: reaction which gives out (heat) energy											
12a	exothermic	Endothermic reaction: reaction which takes in heat from the surroundings											
2009	avathermic	Exothermic Reactions: Heat energy given out											
3a	exumernic	Endothermic Reaction: Energy absorbed from the surroundings											
2009	A substance which	Fuels are burned for the purpose of releasing energy which can then be											
6a	burns to give out energy	used for a purpose.											
2010	Endethermie	Exothermic Reaction which gives off energy/heat to the surroundings											
2a	Endothermic	Endothermic Reaction which takes in energy/heat from the surroundings											
2014	Eveth envio	Type Description AH sign Furthermin Description An sign											
5a	Exothermic	Endothermic Reaction which absorbs heat/energy from the surroundings positive											
		$E_h = c \times m \times \Delta T$											
2014	3 344	Energy = specific heat change in capacity x mass x temperature											
8c		Energy = 4.18 × 0.1 × 8											
		Energy = 3.344KJ											
2015	(A substance which)	A fuel is a substance which burns to produce energy.											
4a	energy	Oxygen gas is required for any substance to burn											

No	Nat5 Past Paper Question Bank															
Traffic Lights Unit 2.3 Energy From Fuels JABCNE								che	m							
Outcome	<u>2000</u> Credit	<u>2001</u> Credit	<u>2002</u> Credit	<u>2003</u> Credit	<u>2004</u> Credit	<u>2005</u> Credit	<u>2006</u> Credit	<u>2007</u> Credit	<u>2008</u> Credit	<u>2009</u> Credit	<u>2010</u> Credit	<u>2011</u> Credit	<u>2012</u> Credit	<u>2013</u> Credit		
35							16c									
36 37											20b					
38				10a												
39a																
39b																
40																

SG Credit	Answer	Reasoning						
2003 <i>C</i>	Chemical which burns							
10a	to give out energy	uels release energy (neat or kinetic) when burned						
2006 <i>C</i>								
16c	Water may freeze	Freezing point of pure water is 0°C						
2010C	carbon dioxide	Alkanols burn to in a plentiful supply of air to form carbon dioxide and water:						
20b	& water	2C₃H7OH + 9O₂ → 6CO₂ + 8H2O						

No	Nat5 Past Paper Question Bank															
Traffic Lights Unit 2.3 Energy From Fuels										J	AB	che	m			
Outcome	2000 General	2001 General	2002 General	2003 General	2004 General	2005 General	2006 General	2007 General	2008 General	2009 General	2010 General	2011 General	2012 General	2013 General		
35						9b				9a				17c		
36 37	12a 12b			16c		17a		9b(i)	19d					11d		
38					9a				19c							
39a																
39b																
40																

SG General	Answer	Reasoning								
2000 <i>G</i> 12a	oxygen	All substances use up oxygen as they burn.								
2000 <i>G</i> 12b	carbon dioxide water	 Candle wax is a hydrocarbon ∴ candle wax only contains carbon and hydrogen carbon burns to form carbon dioxide (turns lime water milky) hydrogen burns to form water (condenses in test tube A) 								
2003 <i>G</i> 16c	water or H2O	$2H_2 + O_2 \longrightarrow H_2O$								
2004 <i>G</i> 9a	burns to release energy	A fuel is a substance which releases energy (usually heat) when it is burned.								
2005 <i>G</i> 9b	exothermic	Exothermic a reaction which releases heat Endothermic a reaction which takes in heat								
2005 <i>6</i> 17a	carbon dioxide and water	Carbon in C₂H6O₂ burns to form CO₂, hydrogen in C₂H6O₂ burns to form H₂O: ethylene glycol + oxygen carbon dioxide + water 2C₂H6O₂ + 5O₂ 4CO₂ + 6H₂O								
2007 <i>G</i> 9b (i)	oxygen	All combustion/burning reactions require oxygen as a reactant								
2008 <i>G</i> 19c	substance burned to give out energy	Fuels are burned to release energy (usually heat energy)								
²⁰⁰⁸ <i>G</i> 19d	carbon dioxide + water	 Hydrocarbons: compounds containing hydrogen and carbon only hydrogen burns to form water (H2O) carbon burns to form carbon dioxide (CO2) in plentiful supply of air 								
20096 9a	exothermic	Exothermic Reaction which gives out heat Endothermic Reaction which takes in heat from the surroundings								
2013 <i>G</i> 11d	Carbon dioxide and ¹ water	 Methane is a hydrocarbon with the formula CH₄. the carbon in methane burns in a plentiful supply of air to form carbon dioxide. the hydrogen in methane burns to form water. 								
²⁰¹³ <i>G</i> 17c	Gives out heat	Exothermic Reaction which gives out heat Endothermic Reaction which takes in heat from the surroundings								